TOP SECRET

115/49/TOPSTC/AS-14
Copy No
\qquad

ARMY SECURITY AGENCY
CSGAS-I4
To: \qquad

TOP SECRET

TOP SEGRET

$\mathrm{DF}-174 \mathrm{~A}$

FOUR FATMRS BY FRITZ IUNZER

1. The attached is an Amy Security Agoncy translation of four brief nayers prepared by Pritz lWITZER, former naniber of and expert on cipher machines for the Amy High Comand Signal Intelligence Agancy (OKH/Gen d NA).
2. I'hese are the first of a series of lapers reperod by MENZINR at the request of Aryy Socurity Agency. HENFSR is presently held at the Hq 7707 European Cornend Intelligence Center; his release is expected approximately 31 Januery 1950. It is therefore requested that any questions rising fron these papers be addrossed to $A S-u_{4}$ as soon as practicable, in order that MENZER may bo cqueried on pertinent points.
3. Recipients of this document are referred to TICOM DF-174 for details concerning MENZER's detentian and past career.

Translatod and Fdited: R.T.P.	35 copies; 24 pages
December 1949	
Distribution: Nomal	

TOP SEGRET

INTHK OF CNHFNTS
Page
THE ENIGMA IRINCIPLE 1
I. General 1
II. Construction of the Inigma
III. Encipherment 3
CIPHER NEVICE 39 7
I. Generral 7
II. Drive Mechanism 7
III. Cinher Process 10
IT. Choice of the Messa; Key and Its Consequences 11
CALCUISTINH OF THI FERION ••ITH DEVICE 39 15
DIE LUECKEMFUEILERTALZE (THE NOTCH FIIGR YHEL) 22.

TOP SECRET

THE ENIGMA PRINCIFLE

I. General

The Enigma eipher machine was developed about 1925. It is one of the first useful cipher machinos to be produced in cmantity. As basis of the invention practical use was made of an idea dating from the 15 th century. This invention is an al thabetically arranged systen of slides consisting of two strips which can be slid one against the other.

Example: Margin: abcdefghijkerunongrstuvaxyz
Tongue: bedefighijkfrnoparstuvnxyzabedef...a
The tongue is movable and is slid one space to the left after the encinkernent of a lotter. Thore are therefore 26 different positions. The first plainotext letter is onciphered in the first position, the second plain text letter in the second position, and the 26th letter in the 26th position. This is continued unt il the cjcle repeats after the 26 th step. This cryptographic syst mi does not satisfy present day security renuircments, evon if rendom alphabets aro used rather than standard alphabets. This insecurjity rosults fron the short poriod (Prequenz) of 2.6 steps.

However, if a plain letter is enciphered usine, let us say, three slide systers, which bear indenendently scrambled ol phabets, and if encjiphoment is in three stares, then with coreful manipulation security can be increased infinitely. Since there are 26 pousible settings for each slide, with three siides $26^{3}=27,576$ different settings can be obtained before there is a repetition. If the drive of the three toncues follows the principle of a counter, then the period is 17.576. Whan using such a principle, tongue 2 advances ono step after 26 steps by tongue 1 , tongue 3 advances one step aftcr 26 steps by tongue 2 .

In the following exariple throo slide systans aro represented in the initial position and in the positiun after 731 stens taken according to the principle of the muntor. To nake the process oasier to follow, the 26 letters of the plain alyhbet in each of these two positions have been transformed into the 26 letters of the cipher alrhabet by the aid of slicle systers $I_{2}, 2$ and 3 . (See conversion.)

TOP SECRET

	EXAMPLE OF A THREE-FOLD SLIDE SYSTEM
EXAMPLE 1	SLIDE POSITION FOR THE FIRST LETTER
SLIDE 1	
SLIDE 2	MARGIN VCWEUXLZTAYDMGSFKNEOHRJP!Q TONGUE = DUCTRSBNXYNZQAXEJWGPVFKMLJODUGU.L
SLIDE 3	MARGIN - GPCHOBIWFNAMVELDZKUSTJYRXQ TONGUE - CMRDQQNLLBKYIJPNOEGXVWFZUTSCM。OS
CONVERSION FROM CLIDE 1.2. 3	MARGIN - ATBICDEFGHIJKLHHOPQRSTUVWXYZ TONGUE - FLAILJNWCJSGTUIRYPHMKEVZOXDQB
EXAMPLE 2	SLIOE POSition for the 7315T LETTER
Sliok :	
St.IDE 2	
SLIOE 3	
CONVERSION FROM SLIDE 1. 2. 3^{*}	

TOP SEGRET

ε 37aWマX3

TOP SECRET

TOP SECRET

Even after careful scruting of the cirhar almabets 1 and 731 resulting from these convorsions, their cuual connoction is not recognizable. Therefore the conclusion may be dramer that with the 17,576 different slide positions 17.57 different cipher alphabets can be formed whose sequence is determined by the law govoming the drive (counter mechanism principle). In spite of the different structure of the 27,576 cipher elphabets there is, of course, a homogenoous relation amone them but this is not to bo investigated here. Because of the numprical ccurse of the three slide syotems, it is possible to use every position in this poriod as initial position. Tho three-iold silde system described above can be sirelifled in respect to hancling if the three tongues have instead of the 52 letters 52 connecting lines in each case and are carried between tro margins. For groater clarity only a few connecting lines have boan dram in. Furthermore tho letters of the second mare ginal scale can drop out if in their stead any two letters (positions) are connected with one onother by a line. (See Paçe 2, Example 3.)

The Main-test lettor is looked up in margin 1 , and the arpropriate connecting lines are follored across the three tongws, [along] margin 2, and beck across the three tongues to mergin 1。 ifter enciphering a letter the three tongues are stepped aproprietely. In this way reciprocal relations botween the plaintext letters and the cipher lettors arise which are advantagoous in respect to operation but are disadvantageous with respect to sccurity. (More will bo said refrarding this later.)

II. Construction of the Enigme

In the construction of the Enigma Cipher Machine the above described recipmeal throe-fold slide system has been mechenized. Instent of the three tongues, three rotable ciphor wheels AI, 2, 3 heve bcen employed which have 26 electric contacts equally spacec. on each face. The contacts of the one face ire connected by insulated mires with the contacts of the other faco. the marginal scales 1 and 2 have also been developed as wheel.s. The cont ct points of the reversing wheel A8 (margin 2) are permanentiy connected $\begin{aligned} & \text { ith one anothor in pairs. The } 26 \text { contuct points of the entry } \\ & \text { and }\end{aligned}$

TOP SECRET

Wheel A7 are connected with the 25 A-jucks Cl of the jlugboard. The 26 P-jacks C2 of the plughoard are conrected with tho 26 sprint contacts of the koys. inte dimacks and B-jacks of tho plugboarct aro put tozethor in pairs and are eçuiped in ench case with a shorting strip (Cw3). By the aid of the z-polo plue connections tho shorting connections can be broken and the A.jack of one pair crossed with the B-jack of the other pair. The Wheel positions (secuence of the cirher whocls from left to right) and the plug connections are the variable features of the cipher machine. In case a pair of jacks in the plue hoard is not used the Λ and B-jacks are connected by the shorting device.

The drive of the throe cirner wheals is counled with the 26 letter-feys DI-2.2j wiich simultaneously control. the sets of sprin. contacts F . On one side of each cipher wheel is a. ratchet whel 17 . and on the other side a setwable rins with a drive notch. The set table ring of one cipher wheel and the ratchet wheel of the adjacent ciphor wheal in cormection with three stopping ratchats [pamls] F2, wich aro mechanically connected vith the 26 letternkeys, control the novenent of the three cipher whecls. The drive of the three cipher wheels works lilse that of a counter. After 26 stops by the right [sic!] cipher theel the middle :heel takes one step, aftere 26 steps by the middle wicel the left [sic!] wheal and the midale wheel take one step together. In this way 26^{2} steps are consumod. This function differs finn that of the ordinary counting device.

Since this function occurs only evary 650 steps while a cipher toxt must not esceed a marimum length of 280 letters (later of 250 Letters), it is not si mificant.

III. Encipherment

The cipher nachine is sct up according to a given daily hoy.
Brample: Mrea position: II IV
Ming setting: I v t
Plue connections: gith tn cj mess fia lo ok cy dx mum

TOP SECRET

Before encipher ing a massug ley is to welected in the form of thee letters. Tho thros ciphor wheals wre sot to thes a three lotions. Beginning in this position tho koys - ith the corresponding riainwest Ietlers tre dopressed. Mho letters illumingted in the lamp field are writien dom as cirher texto The three lettors of the messa;e ixy are prefired in encijhered form it tho begiminis of the cifher text. Tecipherment is handiled analogously.

TOP SECRET

TOP SECRET

TOP ${ }^{6}$ SECRET

TOP SECRET

CIFIFR UETECE 39
(recise acquaintance with the rnjoma ci.her machine is ussumed)

I. Aeneral

Device 39 is a further development of th- Inigna ciphem mo chine in mechamical. and crypto-technical respects as well as in regard to operation. It is a complotely automatic cipher mohine, i. e。 by pressire a lettermey the mechanism of tho cevise is set in peration, the corresponding letter (letter on the infy board) is oncihered or deciphered and the plain and the cinher letters are jrinted on sewarate nawer tapes by neans of a double type wheel reinter. The cinhor text is automatically divided into groups of five "etters. Independent of the printine device the cipher lot ter may also be rend off the lamp ficld.

In this paper only the cyypto-tochnic: art is treated.
II. Drive fiechani ? ?

The three pin vineels (Nockenrgeder) A 1, 2,3 are mechanically coupled vith tho three cipher whecls B2,2,3. Mechanical provision is nada thet the pin wheels $A, s, 3$ and the cipher wheels $B 2,2,3$ move one step each fins a lwy is pressed. The cipher wheels hovever are prevented from executing the step, if at the feeler lover $61,2,3$ of the associated pin theel there is a positive pino ille cijher wheols have 26 divisions, pin wheel ul has 23, pin theel i2 has 25 and pin wheél 13 has 27 . On each pin wheel an odd number (excluding the number 13) of pins is set in the uswal way as daily key. The period (Frequonz) at the individual pin whocl. cormesponds there fore exactly to the numbr of divisims. Thatmeans 23 stans for A1, 25 steps fore $A 2$ and 27 steps for 43 . The common yoriod of the three sin Whals is tho product of the number of division $23 \times 25 \times 39=15,595$ steys. The poxiod of the cipher whesi is 26 steps when uninfluenced by the pin Whocl. The movenent of the cipher wheols is dependent horever upon the associated pin whel period. fith 23 steps pin wheel AI nakes a full. revolution, cirher whel BI hovever makes anly 23 stoge leas the numor of positive pins. Since the number of divisions of the pin theel and the

TOP SECRET

number of positive pins are prime to 26 (nurber of divisions of the cipher Wheel.s), we get or AI - BI a periori of $23 \times 26=598$ stans, far A2 - 122 $26 \times 26=650$ stops and for $63-133 \quad 27 \times 26=702$ stejs. Since the position of all threo cipher whoals 1 ith rospect to one ancther is decisive for the cipherinif rrocsdure, the function of the cipher hecls must be considered as a whic. The peri od of tho cijher whe els without the influence of the three pin wheals is W stens. Taking into ncorunt the 26^{3} possiblo settings and elininuting the cyclic period disnlacements there are from a cryito-technici I point of viem 36^{2} effectively different basic yeriods of 26 steps.

Undor the influence of the pin wheel functions is $-\mathrm{Cl}, 2,3$ the besic perion of the cishor whecls is lenethened bu the nrowet of the nurber of divisions in the pin rhecls $A 1,2,3$. Hence these arc 26^{2} effectively different periox , whose constant lenthe are given by the prociuct of the number of divisions of $\mathrm{AL}_{2}, 2,3$ and $B(2,2,3)$. If the mumber of divisions A1,2,3 and $12,2,3$ are brolion up into prine factors, then the product of the diferent reime factors gives the Ienith of the jerind and the product of the like frime factors the number of affectively different periods. Heruby the rejetitions of prime factors vihich occur within the number of divisions of one wheal (A2 and A3) mast be regarded as different factors because here the unsysteratic pin settings (positive ard negntive position of the pins) is decisive.

In the develament of Dovice 39 it ras necassary to provide for correspondance with the innign when the pins on the pin wheals are put in the negative position. ${ }^{3}$ This mechanical function will not be described here because it 2. The dificrance must bo prime. Sce page is. [ECitor's note]
3. This was demanded by the German Nevy. EEditor's note]

TOP SECRET

representa a purely machanical denand rather than a crypiontechnicel necossity. Trougil t'is nechanicel demand it did cora about of course that the 676 periods passed ovor j.nto mo poriod. In regard to security it appears to be irmateriel whathor a cipher device yields 676 offectivaly cifferont poriods of 403,676 steps each or one period which is equal to the product of these tro factors.

The three cipher wheals are mounted beticen the entry wheel. B7 and the reversing wheel BS. On tho sicies of the cipher wheols Nㅡ응 aro nounted 26 contectis. These contact points are constucted as disk sprin; contacts. Within cach of tho cipher whenis in \& the 26 contact points on the one side are connected in any desired order with the 26 contict points on the other side. The contuct points of the entry viheel 37 are connocted to the 26 A-jacks DI of the plugboard and the 26 contact points of the roversing wheel BS are connectod to a 26 part plugbord El. Theso 26 jecks are unitud in poirs by interchanceable one-pole nlug connect.ions E2 (according to key).

With the mechanicil rotation of the cipher wheels the contact points necessariiny perform a suitching function. The 36 i-fock DI are unitad with one another in pairs via the contact points $33,13,33, B 1,{ }_{3}^{4}$ B8, E2, B8, B3, B2, B3, R7. Due to the difforine intornal circuits of the cipher wheel, wich are subjoct to no particular rule, constantly new combinations result with the $2 \sigma^{3}$ positions of the aipher wheels.

In contrist to the inigma tive essenticl advancos may be noted in the develoghont of Device 39 in respect to crrptograpizic technisue:
a. The non-uniform and viriabla stepping of the cijtier wheels.
b. The combinations made possible by the variable reversing wheel kil, which noreover is readily changed since it is pluugabie.

By these two inurovemants on the inigma pincinlo it has become virtually inpossible to miko Holierith studies of the constants of the device which would favor the possibility of cryptanalysis.

The followinf cisauvantsgon, however, are retained which are related - to the Enigma principle anci which involve an as get unknown possibility of solution:
4. Order of wheels is reversed by orror. See Supplement. Fditor's note] TOP SECRET

TOP SECRET

a. The reciprocal stmuture on the cipher alyhabets which is produced by a function of the reveroing wheal El.
b. The twompole combinetions of tie luc connections D3, which have a limiting cifect on the dusignations 0.0 the leys.

The principle factor of insecurity in all cipher systerss renicins here, namely, that in spite of all the highly devaloped mechenical cipher devices, the security of the systern is dependmen on the choice oi the iossejo kay. io shall return to this point leter.
III. Gipher Frocess

The cipher process is carriad out liy neans of tho 23, cirouits which have the ir beginnivg and thoir end in the 26 A-jacks of the magbourd D2, the 26 koys G ard lamps F to each of which one latter of the alphabet is associated. The key bocrd and lamp field (tyne wheor printing systen) take over ainternately the function of the plain and cipher alyrabet. Since the alpherts are reciprocal no change in the wiring is renuired.
fy pressing one of the 26 koys G a.set of sumings is activated. In so di ing two contact springs are oponed and twe othem closed. The one sot of contacts H controls the type wheal (rapresented only by the terminals jir Supplenant 1). Tho other circuit, which is controjued by the second set 2. contact springs, switches in the c ircuit which makes possible the cipher protess by reans of the lamp field and the three cipher the els.

Device 39 is to be set according to tho daily kay. The dajly key corsists, for instance, of the folloving data:

Wheal position: III JV I
Plughoard connections: bh qy do gm ac wy fitx ei kr pr jn su
Reversing whel: min io at hs br jig cz fy gx ow iv lu
Pin wheel 11 acegiknpriu (11)
Pin wheel A2 beeghampriu (11)
Pin wheol A3 acefhjumprsuvxz (15)
Before ciphering a text the three ciphor wheals and the throe pin wheels are to be set in an initial position which hereafter will be cijled the
 indivicuaily because a great part of tho security of the cryptograir depends on its selection. (10 messergos in phase can be solved, whereby it does not

TOP SECRET

2he 6 letters of the message key are disguised in the usual form and proficed at the baginning of tho cipher text. To aeroe upon a dirforent position has no significance as fiar as security is coneorned because the letters will be recognizod as a kind of indicator groun in any case. Begirning with the nessage koy setting, the lettors of the ploin text are onctiphered by pressing the corresponding koys and the apropriate cipher lettems are printed by the nechanical printing, devico. Then docinhering the process is amblogous.

IV. Ghoice of the lioseate Key anci Its Consequences

On the basis of the experiences of the last fifteon years an attempt must sometime be made to determine: my the analysis of cryotopraphic systems, some of which were very complicateci and divarse, has been successfut. Two essential types are noted in this connection:
(1) Cryptanalysis by the aic of compromises of all sorts
(2) Cryptanalysis with the aid of repeated periocs (lining up or matching).

The possibilities of cryptanalysis which fall uncier point (1) can be counteracted in the case of substitution systems by the recuiremont thet reconstruction of the dasl: koy be imbossible even with ary technical aici. The resuirement usually cannot be exactly proven; therefore, hre only the most ossentisl sturies wili be suggesteci. In this connection, it is naturably assumed that the ucual security requirements have been fulfilled.

The possibilities of cryptanalysis which fall under point (2) are per 89. only special compromises of the u tographic system. However, this mothod will be eriphasizod vecause it can be omployed and can lead to auccoss vithout any frevious kroviedge of the cryptographic systems. If, for instance, from a Iot of homogenoous troffic single mossages ares put to other which contain nore parallel passeges or other charactaristics than vould be oxpectod by the laws of proifibility, then it ray be assumed on the basis of experience that they are in the same key and in the same phase. In the case of the Enigma cryptograns are tarned alike in loy and phase which ware produced by the use of the sarie dasily key and the same setting of the three cipher vincels. In this connection it must be remembered that, due to the cyclic course of the roriod, oniy fragnents of two creptogrms noed be in phase.

TOP SECRET

Exanple: Ist cryptormam: dreurntosmivexyasciphjelci8at
Thd cxyptogram:
joiuztrownasdfghjkimnbve
If ten cipher texts in phase can bo thus lined up, then solution can be accomplished oy the aid of column frenuencios, etc. 'meorotically this possibility of solution is linited oy the fact that the relntion between the total length of the machine's period and the maximum length of the intracented messages is so determined thet on the basis of probability no repotitions are to bo expected. Howover these considerations are vizlid only when the aryropriate regruations have been observed exactly in tho choice of the message key (starting point in the period). I'ne experience of the past ififcen years has shown however that regulations regurding the choice of nossarge keys are quite gonerally dieregarded. The cause is not the evil intent of the responsible person bit rather convenience.

Consequently some reflection is in order es to how in the chotee of the nessary key convenience can be furthered and at the seme time the ontire neriod exhausted in order to supprees the occurronce of messages in phese. Because exquarience shows that mandel moans are inadorquite, the solution is to be attained by tocinicul means.

Every cipher dovice gots a specialIy devaloned messaje key indicator which must at sometim shovevery messego key wich can be set up on the cipher device and which is permanently attached to the cipher device. The mechanical course of such a messace koy indicat or must be so constitutod that coincidence is ruled out, no matter how many machines are employed. Such a device will be cescribed here, one wich fulfills the ennditions, is the size of a counter, and is conceived for Dovice 39. It may be romarlad that the idea is new and has never boon put into rractical use in cryntomechnology.

Six wheols with the divisions $26,26,20,23,25$ and 27 aro to be so driven that each theel takes on the averafe 13 steps to every 2.6 drive impulses and collectively yield a period ectual to the product of the divisions of the 6 thoels. Tho drive is by means of a sprime which is put under tension when the knys arn mrossed and c: n relisve itself of tonsion

TOP SEGRET

by the unimpeded stepping of the six counter device disks. गsing these mechanical principles, the number of steps of the six counter device disks is dependent on the key pressure from each depression of the key to the next and is therefore not subject to control. Each counter disk is inscribed with a rancioni alphabet. In this connection care must be taken that no disk inscription is repeated in any message key inoicator among all the cipher devices. By pressing a button the message key indicator can be stopped. The six letters then visible are to be used as message key.

The use of such a message key principle guarantees:
(1) that no message key combination will be repeated for a long time in any one cipher machine,
(2) that the occurrence of cipher texts in the same key ano in phase will only be possible by pure chance. Chance, horever, can be properiy taken care of when constructing a cipher cevice through the ratio of the period length to the amount of enciphered traffic.

TOP SECRET

1. Drive Jav:

a. Munbor a" divisions of the pin wheels Al,2,3 $A I=23, A 2 \cdot 23,13=27$
b. Nuriber of offisions of the cirher wheels $81,2,3$ $B I=26, B:=26, B 3=26$
c. Pin wheels $A l, 2,3$ with their effective jins affect the course of cipher whe: B B1,2,3.
d. Accoriing to their divisions pins (t) on the pin wineels can be brought inlo an effective or ineffective position. That pin position is termeci effective which checks the course of the cimher wheel.
e. If : $: 1$ pins on pin wheel $A, 2,3$ are in the ineffective pasition then pin theels $\mathrm{A} 3,2,3$ and cipher wheels $\mathrm{Bl}, 2,3$ taks one step each tine a by is pressed.
f. Ir numbe of offective pins is to bo deternined by the folloring formal i: the number of divisians of the pin wheal leos the nunber of effer ive pins must bo prime to the number of divisions of the cipher Wheeno

Burber of efiective pins $=(t A-n) \neq t B$ 。
g. The total period is the rroduct of the number of divisions of A1, A ? $, A 3, B 1$, I2, $B 3$. It broates up into partial periods if the factors are not prime to one another. The sum of the partial periods is ecual to the product of the divisions of all the wheels。

TOP SECGET

TOP SECRET

In the present case 36^{2} partiol periculs (B2 \times B3) of the length AI $\times 42 \times A 3 \times \mathrm{RI}=23 \times 25 \times 27 \times 26$ e 403676 stepe ire derived。

The following example [in minjature] is intended to illustrate the compratation.

Terms: $A=$ pin wheels $(t 1,2,3)$
$B=$ cipher wheels ($t 4,5,6$)
$\mathrm{f}=$ staps $34,5,6$
$t=$ number of divisions of $A 1,2,3$ or $B 1,2,3$
$U \approx$ e evolutions of A or B
n : numbar af of fective pins on A
$T=$ period
2infor $=A 1,2,3, \quad 134,5,6$
$h=$ braking of the coursc of $B 4,5,6$
$A 1=5, A 2=7, A 3=9, B 4=4, B 5=4, B 6=2$.
a. Piriods vithout effective pins on the pin wheels:
$A 1=5$ steps
$\mathrm{A} 2=7$ steps
$A 3=9$ steps
$B 4=4$ stops
$B 5^{\circ}=4$ steps
$B 6=4$ steps
b. Pin setting (effective pins)

AI) Atl $-n \neq B t 4=5-2=3 \neq 4$ (2 effective pins)
A2) At2 $-n \neq B t 5=7-4=3 \neq 4$ (4 effective jins)
A3) At $3-\mathrm{n} \neq \mathrm{Bt} 6=9-6=3 \neq 4$ (ó effective pins)

TOP SECRET

TOP SEGRET

c. Pericals: A1B! $=41 \times t 4=5 \pi /=20$ stops.

A1 1234.51231,51231,51234,5 00000000 effective piras
B4 abbecdae'beddaabecdd $=20$ steps
A.2 123456712345671.2345671234.567

0000000 O 00000000 effective pins
B5 aamabroddddaabeccedrlabbbbecd $=28$ stops

- ¢ 000000000000000000000 effective pins

56 aa boceddddaabbbccccddaaainbbecidicaa 36 sters
d. Feriod $A 1,2,3=t 1 \times t 2 \times t 3=5 \times 7 \times 7=315$ steps
e. Revolutions of a pir theal during the course of the period of Al,2,3 (37.5 steps).

$$
\frac{F}{A t I}=\frac{U A I}{}=\frac{315}{5}=63111, \quad \frac{315}{7}=45 U A 2, \quad \frac{375}{9}=350 A 3
$$

Hence AI makes 63 revolutions, A2 ruites i5 and i3 riales 35.
$f_{\text {. Number of effective pin functions (brakings of the cipher vhecls B4,5,6) }}$) within the course of one yeriod of $\mathrm{Al}, 2,30$
AI: $h 2=U 1 \times n] A=63 \times 2=126$ stcns
$\therefore 2: \quad h 2=\mathrm{U} 2 \times \mathrm{n} 2 \mu=45 \times 4=280$ siths
A3: $h 3=U 3 \times n 3 A=35 \times 6=210$ stens
g. Number of steps of ciphor wheels $34,5,6$ 。

B2: $\mathrm{fl}=\mathrm{F}-\mathrm{hl}=315-126=189$ steps
132: $\mathrm{f} 2=\mathrm{F}-\mathrm{h} 2=315-180=135$ stops
B3: $13=F-h 3=315-120=105$ sters
ho Nurbucs of revolutios of the cipher whecle with in one period of A], 2,3 .
$B 4: B 4 U=\frac{f 1}{B t}=\frac{189}{4}=47$ I/4 revolutions
$\mathrm{B5}: \mathrm{B} 5 \mathrm{U}=\frac{\mathrm{f} 2}{\mathrm{Bt}}=\frac{135}{4}=333 / 4$ revalutions
D6: $B 6 U=\frac{13}{3 t}=\frac{105}{4}=261 / 4$ rovolutions

1. The period $41,2,3,34,5,6$ is found from the product of the t 's.

Nuvertheless the priod of $4,2,2,3$ B4,5,6 has onli run out when all drive whels and cinher theels have completed full revolutions at the same tjme. With 315 steps this is only nitiofied for kig2,30 :hnoels :31,2,3 have, as shown in paragraph h, made $1 / 4,3 / 4$, and $1 / 4$ too many revom lutions. The period A1,2,3 must therofor e be run through several times before all six wheels reach the initial pusition simultaneously.

TOP SECRET

In sunning through the reriods $A 1,2,3$ the followine stens are rado.

Full

Periods of
$41,2,3$
Steps
= Cirher Theel Revolutions
1
2
325
630
94.5

421260
$B 4447-2 / 4$, $\quad 85 \quad 33-3 / 4 s$
$1362.5-1 / 4$
$34945-1 / 2, \quad 3567-1 / 2, \quad \quad 86523-1 / 2$
B4 $141-3 / 4, \quad 35 I O 1-1 / 4, \quad 36 \mathrm{r} 7 \mathrm{~m}=3 / 4$
34280,
55135,
S6 105
The nerind Al.2. 3 Bl. 5.6 pields, therofore:
$F=A 1 \times A 2 \times A 3 \times B 4 \times B=B 6=5 \times 7 \times 9 \times 4=1260$ stops
K. In the preceuting exarile each cirhor wheol tats 4 positions. ith 3 cipher the el.s there aro thorefore l_{p}^{3} eifoctively different pasitionss that means $4 \times 4 \times 4=64$ nositions. The pin wheels $41,2,3$ have $5 \times 7 \times 9=325$ offectively difierent positions. The mins $1-4$ shown in paragraph ithad as a resuit that each of the 31.5 positions of the pin weerls $42,2,3$ carle into connection in each case with only 4 of the 64 pasaibilities of the ci.nher wheel.
E. G. The position of tho ?in whecels 121,1 only occurs in connection vith the cipher theel positions aaa, beb cive, ddd. 4 of the 64 possibilities alnays ocour torether so that there are $\frac{64}{4}=16$ periods with a lonth of 1260 store. This mumar 16 caies from the procluct $35 \times 36=1, \times 4=16$. The ireaking down of the period given by the rrociuct of all 6 viheclsi into 16 partial periods is the consequence of the oruel mumer of divisions on $134,5,6$.

TOP SECRET

A1 1 2 $3451-2 ; 34522341512345|1234512| 34|512| 3415$
34 à b b ced à abbcdda abecci dabbecdaabbed da a

B6 a abbcccddddaabbbccccdda a abbbbccddda
$b c c d d a b b c c d a a b b c d d a \operatorname{a} b c c d d a b b c c d a a b b$
d dddaabceccddabbbbccdaa a abbcadddaab

 $c c c c d d a b b b b c c d a a a a b b c d d d d a a b c e c c d d a$
 $a \operatorname{a} a b b c c c d d d d a a b b b c c c c d d a a a b b b b c c d d$

 $b: b b c c d a a \operatorname{a} b \quad b c d d d d a \operatorname{a} b c c c c d a b b b b c e d$
 $d a a a a b b: c c d d d d a \operatorname{a} b b b c c c c d d a a a b b b b c c d$

TOP SECRET

$12134512 \mid 3451213451213451123451213415121345$
 $1|2| 3|45| 672|2 ; 3 / 45| 671|2| 3|45 / 071| 2|3| 45|67| 2|2| 3|45| 67$ a a a abbcddddaabccccddabbbbccdaaaabbc
 $d d a a a a b b c c c d d d d a a b b b c c c c d d a a a b b b b c c$
$1234|5| 121345121345121341512: 34\} 5121341512 \mid 3415$ $b c c d d a b b c c d a a b b c d d a a b c c d a a b b c c d a a b b$
 ddddaabceccddabbbbcedaa a abbcddddaab
 $d d d a a a a b b c c c d d d d a a b b b c c c c d d a a a b b b b c$
 $c d d a a b c c d d a b b c c d a a b b c d d a a b c c d d a b b c c$
 $c c c c d d a b b b b c c d a a a a b b c d d d d a \operatorname{a} b c c c c d d a$
 $c d d d a a a a b b c c c d d d d a b b b b c c c d d a a a b b b b$
 $d a a b b c d d a a b c c d a b b c c d a \operatorname{a} b \mathrm{~b}$ addaabcedd

IIIIII
 $a b b c c d a a b b c d d a a b c c d d a b b c c d a \operatorname{abbcda} a \operatorname{a}$ acda
 a a a abbcdddda abccceddabbbbcedaaaabbcebda

TOP SEGRET

TOP SECRET

AI a

il c

Run of 180 steps

TOP SECRET

TOP SECRET

DIE LUECKENFTELLERWALZE (THE NOTCH FILLER KHEEL)
(Kinowlecige of thu Ruifena Mrinciple is Assumed)

The counterolike drive system of the three cirge dienls, the invariable, intornal wiring of the wheels, the fixed assignment of the letters to the 26 keys and lamng, and the reciprocal effect of the reversing theel - wich results in the reciprocal stucture of the cipher alphabets, have disadvantageous results for the security of the cryptogrens.

Due to the fixed internal wiring of the wheels, 17,576 basic cipher al phabets can bo derived with each wheel position and their sequence is fixed by the rigid, counter-like drive of the cipher wheels. The variable ring settings on the three wheels have mly an insignificant influence on the change of this sequence. (Cyclic displacement.)

The plug connections nerely have the effect of a substitution table on the derivation of the besic cipher alphabots, i. ϵ_{0} the characteristics of the cipher alphabets with respect to one another are preserved.

The drive of the three wheels is by three pawls and three ratchet wheels, one associat od to each cipher wheel. On the settable rings of the cigher theels there is in oach case ore notch. The settable ring of the right wheel in connection with the ratchet wheel of the middle wheel controls the stepping [of the ridale wheel] and the ring of the middle wheel in connection visth the retchet wheel of the left wheel controls the stepping [of the latter]. The rine of the leit wheal has no effect on the steppinge After 26 sters by the ri, jht whol the miccle wheel takes one step, after 26 steps by the nirdle wheel the left tikeel and the midde whe el. take one step independent of the function of the right wheel. This function couses the middle and right wheal to have a period of 650 steps instead of 576 porsible suopso.

1. nctualiy the orcier is roversed. The left crives the center, qnd the left anc center crive the right. Editor's notel

TOP SECRET

The machine constants (wheel wiring, drive notches, atc.) were included as security factors in the assessment of the rachine when it ซas put into use. Assuming is knowledge of the machine, it did not satisfy present day security demands. The reconstruction of the entire daily key was possible by mechanic el. meens provirod 15 to 20 letuers of enciphered X-toxt wore given. (The lettor X had to be enciphered 20 times as plain letter.)

Recognition of tilis fact led to the development of the Iuckenfullarwolze. Incke and Antriebslexbe (drive not ch) are synonomous. Since the drive notch could be opened in the form of a pin at each of the 26 positions and could be fillod agaiv, this ciphor whoel was given the name lickenfurlerwalzo. Since the ccistruction is carried out only on the settable ring, only the ring with the notch fillers is represented in the supplement. In the case of the 'Ackonful Tormalze, howevor, the ring is rigidly attached to the whoel.

Then the Idckenfull arwalze vas put into use it was intended to have trese drive notches effective daily in different arrangements. This 4 asure involves a further shortening of the poriod by some 2000 steps but has a decided influence on the security of the resulting crypoyrems.

Moreover other coninations on the Luckenfuliexvalze with resnect to the number of effective rot chos can be mployed. In this connection it should be remembered that the nuriber of open not ches shall not be a multiple of 2 or 13 and by increasing the nurbor of effective not ches the period is corrospondingly shortened. It is also possible to subdivide the entire daily key, which in general is valid for $2 /$ hours, by using dif ferent arrangenents of the not ch fillers.

TOP SECRET

24
TOP SECRET

